Answer:
Vapor pressure of solution = 23.9 Torr
Explanation:
Let's apply the colligative poperty of vapor pressure to solve this:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent - Vapor pressure of solution
We have solvent and solute mass, so let's find out the moles of each.
55.3 g / 62 g/mol = 0.89 moles
285.2 g / 18 g/mol = 15.84 moles
Let's determine the mole fraction of ethylene glycol.
Mole fraction = Moles of ethylene glyco / Total moles
0.89 moles / (0.89 + 15.84) = 0.053
25.3 Torr - Vapor pressure of solution = 25.3 Torr . 0.053
Vapor pressure of solution = 25.3 Torr . 0.053 - 25.3 Torr
Vapor pressure of solution = 23.9 Torr
<u>Answer:</u> The mass of water produced in the reaction is 97.2 grams
<u>Explanation:</u>
We are given:
Moles of calcium hydroxide = 2.70 moles
The chemical equation for the reaction of calcium hydroxide and HCl follows:

By Stoichiometry of the reaction:
1 mole of calcium hydroxide produces 2 moles of water
So, 2.70 moles of calcium hydroxide will produce =
of HCl
To calculate mass for given number of moles, we use the equation:
Molar mass of water = 18 g/mol
Moles of water = 5.40 moles
Putting values in above equation, we get:

Hence, the mass of water produced in the reaction is 97.2 grams
The concentration of a cell is generally 0.15 M (0.9 % NaCl)
As given the solution has concentration = 200mm = 0.02 M
This concentration of solution is less than the concentration of cell
Hence solution is hypotonic (less concentration) and cell will be hypertonic