For the given reaction, according to the Law of Conservation of Energy, the energy required to decompose Hcl and produce
are equal.
Answer: Option C
<u>Explanation:</u>
According to law of conservation's of energy, energy can only be transferred from reactants to product side. So in this process, it is stated that 185 kJ of energy will be needed to decompose it. So that 185 kJ of energy will be getting transferred to produce the creation of hydrogen and chloride in the product side.
So if we see from the reactants side, the energy of 185 kJ is required for decomposition of hydrogen chloride. Similarly, if we see from the product side, the 185 kJ utilized for decomposition is transferred as energy required to create hydrogen and chlorine atoms. This statement will be in accordance with the law of conservation's of energy.
Answer:
Nitrogen
Explanation:
Elements in period two includes lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon.
According to periodic trends, the electro negativity values are expected to increase across the period up to fluorine. Hence, as we go right wards, we encounter elements with higher electronegative values.
While lithium has an electronegative value of 1 , the electronegative value of element nitrogen is thrrr times this which is equal to three
Answer: b
can’t be weather balloons cuz they would pop.
satellites are used for different things
no jet
Answer:
2.2 moles of Fe will be produced
Explanation:
Step 1: Data given
Number of moles of hydrogen gas = 3.3 moles
Number of moles of iron oxide = 1.5 moles
Step 2: The balanced equation
3H2 + Fe2O3 → 2Fe + 3H2O
Step 3: Calculate the limiting reactant
For 3 moles H2 we need 1 mol Fe2O3 to produce 2 moles Fe and 3 moles H2O
Hydrogen gas is the limiting reactant. It will completely be consumed (3.3 moles). Fe2O3 is in excess. There will react 3.3 / 3 = 1.1 moles
There will remain 1.5 - 1.1 = 0.4 moles Fe2O3
Step 4: Calculate moles Fe
For 3 moles H2 we need 1 mol Fe2O3 to produce 2 moles Fe and 3 moles H2O
For 3.3 moles H2 we'll have 2/3 * 3.3 = 2.2 moles Fe
2.2 moles of Fe will be produced
Answer: sorry I’m late but it is 11 electrons
Explanation: