Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
Answer: C. 12.6
Explanation: 2*pi*1.8= 11.304
11.304/0.9= 12.56
Answer:
tympanic membrane (eardrum)
Explanation:
The sound waves spread through the air and reach the outer ear, into which they penetrate through the ear canal. In doing so, they stimulate the eardrum, which closes the inner end of the duct. By vibrating this membrane, the vibration of a chain of ossicles located in the middle ear is induced. These ossicles transmit their vibration to the oval window, which is a membranous structure that communicates the middle ear with the cochlea of the inner ear. When the oval membrane moves, it moves the liquid (perilymph) that fills one of the three cavities of the cochlea generating waves in it. These waves mechanically stimulate the sensory cells (hair cells) located in the organ of Corti, within the cochlea in the central cavity, the middle ramp. This cavity is filled with a liquid rich in K +, endolymph. The cells embedded in the endolymph, change their permeability to K + due to the movement of the cilia and respond by releasing a neurotransmitter that excites the nerve terminals, which initiate the auditory sensory pathway.
Answer:
- No, this doesn't mean the electric potential equals zero.
Explanation:
In electrostatics, the electric field is related to the gradient of the electric potential V with :
This means that for constant electric potential the electric field must be zero:
This is not the only case in which we would find an zero electric field, as, any scalar field with gradient zero will give an zero electric field. For example:
give an electric field of zero at point (0,0,0)
True
The half-life isn’t applicable to a first order reaction because it does not rely on the concentration of reactant present. However the 2nd order reaction is dependent on the concentration of the reactant present.
The relationship between the half life and the reactant is an inverse one.
The half life is usually reduced or shortened with an increase in the concentration and vice versa.