Answer:
Explanation:
Given
Total time=27 min 43.6 s=1663.6 s
total distance=10 km
Initial distance 
time taken=25 min =1500 s
initial speed 
after 8.13 km mark steve started to accelerate
speed after 60 s


distance traveled in 60 sec


time taken in last part of journey

distance traveled in this time


and total distance



<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy
will be:
Where
is the mass of the object,
the acceleration due gravity and
the height of the object.
As we can see, the value of
is directly proportional to the height.
Answer:
96w
Explanation:
p=Iv..where v=12 and I=8.0
Answer:
Initial pressure = 6 atm. Work = 0.144 J
Explanation:
You need to know the equation P1*V1=P2*V2, where P1 is the initial pressure, V1 is the initial volume, and P2 and V2 are the final pressure and volume respectively. So you can rearrange the terms and find that (1.2*0.05)/(0.01) = initial pressure = 6 atm. The work done by the system can be obtained calculating the are under the curve, so it is 0.144J