False. They don't borrow electrons at all. They already have their respective electron affinities. This is called as electronegativity, and it's an occurence where it already has its own from its actual structure. It never borrows any electrons at all.
<span>The correct answer is the first option. Electron is not found in the nucleus of an atom. The sub-atomic particles of an atom are the
proton, electron and the neutron. An electron has a charge of -1 and a
smaller mass than a proton. Proton has the same mass with the neutron. The
ratio between the mass of a proton and an electron is about 2000. An electron
has an equal value but negative charge with the proton.</span>
<span>Okay then I would go with choice B since fusion takes place in the sun which is a giant star.</span>
Answer:
I think it's B
Explanation:
apologies if I get this wrong
Answer:
Any binary molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
Explanation:
Going down in a group increases the atomic radius and a greater atomic radius implyes greater ionic radius.
When ionization takes place in these compounds they yelds protons (hidrogen ion) and an lewis base (anion). The greater the ionic radius the greater its stability, thus the periodic tendency is increaing the acidity of binary hidrogen compounds when going down a group. On the other hand going up a group decreases acidity, so any molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.