To change my friends mind, after they've already said weather predictions are just guesses, I would say they are correct, but not only to they use guesses to predict what will happen, but they also, before hand, use atmospheric tools. They then predict from the data collected. They do both.
Power delivered = (energy delivered) / (time to deliver the energy)
Power delivered = (4,000 J) / (0.5 sec)
Power delivered = 8,000 watts
I'm a little surprised to learn that Electro draws his power from the mains. This is VERY good news for Spiderman ! It means that Spiderman can always avoid tangling with Electro ... all he has to do is stay farther away from Electro than the length of Electro's extension cord.
But OK. Let's assume that Electro draws it all from the mains. Then inevitably, there must be some loss in Electro's conversion process, between the outlet and his fingertips (or wherever he shoots his bolts from).
The efficiency of Electro's internal process is
<em>(power he shoots out) / (power he draws from the mains) </em>.
So, if he delivers energy toward his target at the rate of 8,000 watts, he must draw power from the mains at the rate of
<em>(8,000 watts) / (his internal efficiency) . </em>
For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099
Answer:
(a) When the resultant force is pointing along east line, the magnitude and direction of the second force is 280 N East
(b) When the resultant force is pointing along west line, the magnitude and direction of the second force is 560 N West
Explanation:
Given;
a force vector points due east,
= 140 N
let the second force = 
let the resultant of the two vectors = F
(a) When the resultant force is pointing along east line
the second force must be pointing due east


(b) When the resultant force is pointing along west line
the second force must be pointing due west and it must have a greater magnitude compared to the first force in order to have a resultant in west line.

