Answer:
F = 85696.5 N = 85.69 KN
Explanation:
In this scenario, we apply Newton's Second Law:

where,
F = Upthrust = ?
m = mass of space craft = 5000 kg
g = acceleration due to gravity on surface of Kepler-10b = (1.53)(9.81 m/s²)
g = 15.0093 m/s²
a = acceleration required = 2.13 m/s²
Therefore,

<u>F = 85696.5 N = 85.69 KN</u>
We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
Answer:
54 km/hr
Explanation:
m/s to km/hr => 18/5
15 m/s to km/hr => 15 x 18/5 =>3 x 18 => 54km/hr
Answer:
K/2
Explanation:
The law of conservation of mechanical energy states that the sum of the kinetic and potential energies is a constant at any point.
At maximum height, the glove has purely potential energy but at the bottom, it has purely kinetic energy.
The potential energy at the top = kinetic energy at the bottom. The potential energy is given by

At half height, this potential energy is

At this height, PE + KE = Constant = KE at bottom or PE at maximum height.

