1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
13

Three resistors are wired in parallel with a battery. Two of the resistors have resistances of 38.7 Q/ and 89.5 Q. The current i

n the 38.7 Q resistor is 0.155 A and the total circuit current Is 0.250 A. What is the resistance of the third resistor?
Physics
1 answer:
Lina20 [59]3 years ago
4 0

Answer:

214.9 \Omega

Explanation:

The three resistors are connected in parallel: this means that the potential difference across each resistor is the same as the voltage of the battery. This can be calculated using the information about the 38.7 \Omega resistor: in fact, since we know its resistance and the current flowing through it (0.155 A), we can find the potential difference across this resistor, which is equal to the voltage of the battery:

V=IR=(0.155 A)(38.7 \Omega)=6.0 V

We also know the total current in the circuit, 0.250 A. This means that we can find the total resistance of the circuit, using Ohm's law:

R_{eq}=\frac{V}{I}=\frac{6.0 V}{0.250 A}=24 \Omega

So now we now the total resistance and the resistance of two of the 3 resistors; therefore, we can find the resistance of the 3rd resistor:

\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\\\frac{1}{R_3}=\frac{1}{R_{eq}}-\frac{1}{R_1}-\frac{1}{R_2}=\frac{1}{24 \Omega}-\frac{1}{38.7\Omega}-\frac{1}{89.5\Omega}=0.00465 \Omega^{-1}\\R_3=\frac{1}{0.00465 \Omega^{-1}}=214.9 \Omega

You might be interested in
Light is traveling through the different media shown. In which medium does light travel fastest?
bija089 [108]
Light travelling in a vacuum is the fastest thing in the universe. The speed would be 2.99x10^8 m/s. The answer to this question is 'vacuum', where light can travel the fastest. I hope this helps you. You're welcome!
8 0
3 years ago
Read 2 more answers
A hungry hawk was preying on a lizard who was running northwards to get away from the low-flying hawk. If the lizard can run 8m
Anastaziya [24]

Answer:

2m/s²

Explanation:

velocity = displacement (distance in a specified direction /time

8 0
3 years ago
Some people believe that the Moon’s phases are caused by Earth’s shadows on the Moon. Is this true?
emmasim [6.3K]
No thats false. If your trying to say is true that people BELIEVED that then yes its true people believed it but if your talking about that question then its false
5 0
3 years ago
3. A 10-centimeter diameter solid sphere made of a conducting material has 10 micro-Coulombs of charge placed upon it. What is t
bazaltina [42]

Answer:

zero

Explanation:

For a solid conducting sphere, charges are present on the surface of the sphere due to a phenomenon known as electrostatic sheilding. This affects the charge present in the body and makes it zero. However, the electrostatic potential appears to be equal to the whole present point that shows on the surface. The surface of a spherical conducting solid sphere is known as an equipotential surface. Thus, the potential difference between the two opposite points on the surface of the sphere will also be zero.

4 0
2 years ago
A wheel with a tire mounted on it rotates at the constant rate of 2.73 revolutions per second. Find the radial acceleration of a
Lostsunrise [7]

Answer:

110.9 m/s²

Explanation:

Given:

Distance of the tack from the rotational axis (r) = 37.7 cm

Constant rate of rotation (N) = 2.73 revolutions per second

Now, we know that,

1 revolution = 2\pi radians

So, 2.73 revolutions = 2.73\times 2\pi=17.153\ radians

Therefore, the angular velocity of the tack is, \omega=17.153\ rad/s

Now, radial acceleration of the tack is given as:

a_r=\omega^2 r

Plug in the given values and solve for a_r. This gives,

a_r=(17.153\ rad/s)^2\times 37.7\ cm\\a_r=294.225\times 37.7\ cm/s^2\\a_r=11092.28\ cm/s^2\\a_r=110.9\ m/s^2\ \ \ \ \ \ \ [1\ cm = 0.01\ m]

Therefore, the radial acceleration of the tack is 110.9 m/s².

4 0
3 years ago
Other questions:
  • During a very quick stop, a car decelerates at 28.4 rad/s?. Assume the tires initially rotated in the positive direction and rad
    11·1 answer
  • A metal pot feels hot to the touch, but the plastic handle does not. Which type of material is the plastic handle? A. A thermal
    15·2 answers
  • ______ are wind-created landforms in the western United States.
    5·2 answers
  • The flow of electrons from one atom to another is called
    12·1 answer
  • What is indicated by the slope of an acceleration vs. time graph?
    7·1 answer
  • An attacker at the base of a castle wall 3.80 m high throws a rock straight up with speed 9.00 m/s from a height of 1.70 m above
    11·1 answer
  • (a) If the position of a chlorine ion in a membrane is measured to an accuracy of 5.00 µm, what is its minimum uncertainty in ve
    15·1 answer
  • 4.
    15·2 answers
  • What are the public policy alternatives to hunger
    11·1 answer
  • 4. A lamp in a circuit has 4 Amps of current. If there is 32 12 of resistance
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!