Answer:
D
Explanation:
It's quite simple actually, you see, what light years basically means is how many years light takes to travel from point a to point b. So here it says that a galaxy is 200 million light years away. So since that light is 200 million years away, it would take 200 million years until that light reaches us.
Answer:
Without units, the results are unclear and it is hard to keep track of what each seperate measurement entails.
Answer:
A. 58.8m/s
Explanation:
The acceleration due to gravity is 9.8 m/s², so the velocity after 6 seconds is ...
v = at
v = (9.8 m/s²)(6 s) = 58.8 m/s
use a = (v1-v2)/t so u would put 14 (initial velocity or v 1) - 6 (the v2) and divide all of that by 4 seconds to get 2m/s/s as your acceleration
Answer:
water is in the vapor state,
Explanation:
We must use calorimetry equations to find the final water temperatures. We assume that all energy is transformed into heat
E = Q₁ + 
Where Q1 is the heat required to bring water from the current temperature to the boiling point
Q₁ = m
(
-T₀)
Q₁ = 50 4180 (100 - 37)
Q₁ = 1.317 10⁷ J
Let's calculate the energy so that all the water changes state
= m L
= 50 2,256 106
= 1,128 10⁸ J
Let's look for the energy needed to convert all the water into steam is
Qt = Q₁ +
Qt = 1.317 107 + 11.28 107
Qt = 12,597 10⁷ J
Let's calculate how much energy is left to heat the water vapor
ΔE = E - Qt
ΔE = 10¹⁰ - 12,597 10⁷
ΔE = 1000 107 - 12,597 107
ΔE = 987.4 10⁷ J
With this energy we heat the steam, clear the final temperature
Q = ΔE = m
(
-To)
(
-T₀) = ΔE / m 
= T₀ + ΔE / m 
= 100 + 987.4 10⁷ / (50 1970)
= 100 + 1,002 10⁵
= 1,003 10⁵ ° C
This result indicates that the water is in the vapor state, in realizing at this temperature the water will be dissociated into its hydrogen and oxygen components