In a reversible reaction, both forward and reverse directions of the reaction generally occur at the same time. While reactants are reacting to produce products, products are reacting to produce reactants. Often, a point is reached at which forward and reverse directions of the reaction occur at the same rate.
Answer:
Try and depend more on renewable energy sources. Use products that are more energy efficient. Make use of lighting control measures. Maintain climate change
Answer:
Explanation:
Here the total force at the horizontal components will be equal to the centripetal force on the car. So we will have:
(1)
- f(fr) is the friction force
- N is the normal force
Now, the sum of forces at the vertical direction is equal to 0.
(2)
Let's combine (1) and (2) to find f(fr)

I hope it helps you!
The electric potential V(z) on the z-axis is : V = 
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
<u>Given data :</u>
V(z) =2kQ / a²(v(a² + z²) ) -z
<h3>Determine the electric potential V(z) on the z axis and magnitude of the electric field</h3>
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV
----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = 
V = ![\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%5Calpha%20%5B%20%28a%5E2%2Bz%5E2%29%5E%5Cfrac%7B1%7D%7B2%7D%20-z%20%5D)
= ![\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%20%28%5Cfrac%7BQ%7D%7B%5Cpi%20%5Calpha%20%5E2%7D%29%5B%28a%5E2%20%2Bz%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20-z%20%5D)
Therefore the electric potential V(z) = 
Also
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : brainly.com/question/25923373
Answer:
C. 14.93 m
Explanation:
The given frequency of the wave, f = 100 Hz
The given equation for the wave speed, <em>v</em>, is presented as follows;
v = f × λ
The speed of sound in water, v = 1,493 m/s
Therefore, we get;
The wavelength, λ = v/f
∴ λ = 1,493 m/s/(100 Hz) = 14.93 m
The wavelength, λ = 14.93 m.