1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
11

The ruler game, HELPPPP PLS

Engineering
2 answers:
Rasek [7]3 years ago
8 0

Answer:

C

Explanation:

ira [324]3 years ago
6 0
<h2>Hey there! </h2>

<h2>Answer:</h2>

3 \frac{1}{4}

<h2>Explanation:</h2>

<h3>The ruler is pointing on </h3><h3>3 \frac{1}{4}</h3>

<h2>Hope it help you </h2>
You might be interested in
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
A well insulated turbine operates at steady state. Steam enters the turbine at 4 MPa with a specific enthalpy of 3015.4 kJ/kg an
Anarel [89]

Answer:

power developed by the turbine = 6927.415 kW

Explanation:

given data

pressure = 4 MPa

specific enthalpy h1 = 3015.4 kJ/kg

velocity v1 = 10 m/s

pressure = 0.07 MPa

specific enthalpy h2 = 2431.7 kJ/kg

velocity v2 = 90 m/s

mass flow rate = 11.95 kg/s

solution

we apply here  thermodynamic equation that

energy equation that is

h1 + \frac{v1}{2}  + q = h2 + \frac{v2}{2}  + w

put here value with

turbine is insulated so q = 0

so here

3015.4 *1000 + \frac{10^2}{2}  =  2431.7 * 1000 + \frac{90^2}{2}  + w

solve we get

w = 579700 J/kg = 579.7 kJ/kg

and

W = mass flow rate × w

W = 11.95 × 579.7

W = 6927.415 kW

power developed by the turbine = 6927.415 kW

7 0
3 years ago
The acceleration of a particle is given by a = 2t − 10, where a is in meters per second squared and t is in seconds. Determine t
tensa zangetsu [6.8K]

Answer

given,

a = 2 t - 10

velocity function

we know,

\dfrac{dv}{dt}=a

\dfrac{dv}{dt}=(2t-10)

integrating both side

\int dv =\int (2t -10) dt

 v = t² - 10 t + C

at t = 0   v = 3

so, 3 = 0 - 0 + C

     C = 3

Velocity function is equal to v = t² - 10 t + 3

Again we know,

\dfrac{dx}{dt}=v

\dfrac{dx}{dt}=(t^2-10t + 3)

integrating both side

\int dx =\int (t^2-10t + 3)dt

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t + C

now, at t= 0 s = -4

-4 = \dfrac{0^3}{3}- 10\dfrac{0^2}{2} + 0 + C

C = -4

So,

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

Position function is equal to x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

8 0
3 years ago
Conclude from the scenario below which type of documentation Holly should use, and explain why this would be the best choice. Ho
NARA [144]

Answer:

Okay

Explanation:

7 0
3 years ago
What affect results when there is an impact between earth and is astroids check all that apply.
Vadim26 [7]

Answer:

Massive destruction

Explanation:

If the asteroid collides with the ground, a massive volume of dust will be blasted into the environment. If it collides with water, the amount of water vapour in the atmosphere will rise. This would result in more rain, which would cause earthquakes and mudslides.

As the asteroid collided with the Earth, massive volumes of dust were ejected into to the atmosphere. The sun's light were stopped from entering the Earth's surface, which is terrible news for plants.

6 0
3 years ago
Other questions:
  • Soap is a very interesting chemical. We even discussed it on the discussion board. How does it work, exactly?
    7·1 answer
  • Given the following materials and their corresponding thermal conductivity values, list them in order from most conductive to le
    12·1 answer
  • If superheated water vapor at 30 MPa iscooled at ​constant pressure​, it will eventually become saturated vapor, and with suffic
    5·1 answer
  • A hot-water stream at 80°C enters a mixing chamber with a mass flow rate of 0.46 kg/s where it is mixed with a stream of cold wa
    14·1 answer
  • The base class Pet has attributes name and age. The derived class Dog inherits attributes from the base class Pet class and incl
    10·1 answer
  • Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm
    12·2 answers
  • Vẽ thủ tục cho một cuộc gọi thuê bao
    15·1 answer
  • Water flows through a converging pipe at a mass flow rate of 25 kg/s. If the inside diameter of the pipes sections are 7.0 cm an
    13·1 answer
  • Code for XOR with two input logic gate
    8·1 answer
  • 1. A drawing of a cabinet shows that its dimensions are 9cm. by 4cm. The drawing indicates 1:50 scaling. What are the actual dim
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!