Explanation:
For a charge concentrated nearly at a point, the electric field is directly proportional to the amount of charge; it is inversely proportional to the square of the distance radially away from the centre of the source charge and depends also upon the nature of the medium.
Answer:
1.1 V
Explanation:
L = 0.45 m
d = 0.11 m
B = 0.80 T
t = 0.036 s
Let e be the emf.
e = B v L
e = 0.80 x 0.11 x 0.45 / 0.036 = 1.1 V
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
Answer:
a bowling ball because it has the most mass.