1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mumz [18]
3 years ago
7

A diverging lens of focal length 18.0m is used to view a shark that is 90.0m away from the lens. If the image formed is 1.0m lon

g, calculate the: (i) image distance; (ii) length of the shark.
Physics
1 answer:
Reil [10]3 years ago
7 0

Answer:

i. + 22.5 m ii. 4.0 m

Explanation:

i. Image distance

Using the lens formula

1/u + 1/v = 1/f where f = focal length = + 18.0 m, u = object distance = distance of shark away from lens = + 90.0 m and v = image distance from lens = unknown

So, we find v

1/v = 1/f - 1/u

= 1/+18 - 1/+90

= (5 - 1)/90

= 4/90

v = 90/4

= + 22.5 m

So the image is real and formed 22.5 m away on the other side of the lens.

ii Length of Shark

Using the magnification formula, m = image height/object height = image distance/object distance. image height = 1.0 m where object height = length of shark.

m = image distance/object distance

= v/u

= +22.5/+90

= 0.25

0.25 = image height/object height

So,

object height = image height/0.25

= 1.0 m/0.25

= 4.0 m

So, the length of the shark is 4.0 m

You might be interested in
Scientists observe an approaching asteroid that is on a collision course with
nasty-shy [4]

Answer:

The approximate velocity the rocket must have to stop the asteroid completely after the collision is;

C. -324 m/s

Explanation:

The parameters of the asteroid and the rocket are;

The mass of the asteroid, m₁ = 11,000 kg

The initial velocity with which the asteroid is approaching Earth, v₁ = 50 m/s

The mass of the rocket, m₂ = 1700 kg

The initial velocity of the rocket = v₂

The final velocity of the combined asteroid and rocket after the collision, v₃ = 0 m/s

By the law of conservation of linear momentum, we have;

The total initial momentum = The total final momentum

m₁·v₁ + m₂·v₂ = (m₁ + m₂)·v₃

Substituting the known values, we get;

11,000 kg × 50 m/s + 1,700 kg × v₂ = (11,000 kg + 1,700 kg) × 0 m/s

11,000 kg × 50 m/s + 1,700 kg × v₂ = 0

∴ 1,700 kg × v₂ = -11,000 kg × 50 m/s

v₂ = (-11,000 kg × 50 m/s)/(1,700 kg) = -323.529412 m/s ≈ -324 m/s

The approximate initial velocity the jet must have to completely stop the asteroid after the collision is -324 m/s.

3 0
3 years ago
All of the following except ______ were part of RCA. A. Westinghouse B. Columbia Broadcasting System C. United Fruit Company D.
PSYCHO15rus [73]

Answer:

Columbia broadcasting system was never been a part of RCA corporation. The other companies Westinghouse, united fruit company and general electric were remain as part of RCA.

Explanation:

7 0
3 years ago
What length of tube would be required to produce a second tone under the same experimental conditions? Explain your answer.
Alisiya [41]

There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.

<u>Explanation:</u>

The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.

The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.

7 0
4 years ago
The moon and other satellites rotate around the earth. Identify the force that keeps these satellites in orbit. A) gravity B) fr
RoseWind [281]
The force is gravity
4 0
3 years ago
Read 2 more answers
Assume that the position vector of A is r=i+j+k . Determine the moment about the origin O if the force F=(1)i+(0)j+(5)k . The mo
ddd [48]

Answer:

M₀ = 5i - 4j - k

Explanation:

Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e

M₀ = r x F

From the question,

r = i + j + k

F = 1i + 0j +  5k

Therefore,

M₀ = (i + j + k) x (1i + 0j +  5k)

M₀ = \left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]

M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)

M₀ = i(5) - j(4) + k(-1)

M₀ = 5i - 4j - k

Therefore, the moment about the origin O of the force F is

M₀ = 5i - 4j - k

3 0
3 years ago
Other questions:
  • Fully describe or explain the solid state of matter. You should include at least 5 ways to characteristics or descriptors that p
    9·1 answer
  • WILL MARK BRAINLIEST!!!!!!!!
    9·1 answer
  • Four breakers of four different sizes are filled with water to the same depth. The temperature of the water is the same in all f
    8·1 answer
  • A potter's wheel is rotating around a vertical axis through its center at a frequency of 2.0 rev/s . The wheel can be considered
    8·1 answer
  • What is something that claims to be science but is not?
    6·1 answer
  • (b) The cabin and passengers have a total mass of 800 kg. The vertical distance between
    12·1 answer
  • The water table is the upper limit of the
    5·1 answer
  • Who was Nikola Tesla?​
    15·2 answers
  • Which burrito will heat up faster .03oz or .05 oz
    14·1 answer
  • Please help me!!!!!!!!!!!!!!!​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!