This may help you
<span>You need to use some stoichiometry here. The only way to do that is if you're working in moles. Since you're given grams of Al, you can convert that moles by dividing by the molar mass.
Then from looking at the coefficients in your equation, you can see that for however many moles of Al react, the same numbers of moles of Fe will be produced, but only half as many moles of Al2O3 will be produced.
To go back to grams, multiply the moles of each product that you get by their molar masses!</span>
Answer:
λ = 5.68×10⁻⁷ m
Explanation:
Given data:
Energy of photon = 3.50 ×10⁻¹⁹ J
Wavelength of photon = ?
Solution:
E = hc/λ
h = planck's constant = 6.63×10⁻³⁴ Js
c = 3×10⁸ m/s
Now we will put the values in formula.
3.50 ×10⁻¹⁹ J = 6.63×10⁻³⁴ Js × 3×10⁸ m/s/ λ
λ = 6.63×10⁻³⁴ Js × 3×10⁸ m/s / 3.50 ×10⁻¹⁹ J
λ = 19.89×10⁻²⁶ J.m / 3.50 ×10⁻¹⁹ J
λ = 5.68×10⁻⁷ m
Atomic number or the number of protons in the element.
Answer:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Explanation:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.