Answer:
2.5 times higher then that on the Earth
Explanation:
Gravity is higher on Jupiter then on Earth because Jupiter is much bigger, because of it's mass compared to Earth the gravity on Jupiter is about 2.4 - 2.5 times higher then Earths surface gravity which means a rock on Jupiter would be around "2.4 - 2.5 times as heavier then it would be on Earth."
Hope this helps.
When g=a, that means everything on earth fall at the same rate.
<h3>Why does everything fall to the earth at the same rate?</h3>
As such, all objects free fall at the same rate regardless of their mass. Because the 9.8 N/kg gravitational field at Earth's surface causes a 9.8 m/s/s acceleration of any object placed there, we often call this ratio the acceleration of gravity.
<h3>Why is gravity equal to acceleration?</h3>
When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.
Know more about gravity here
brainly.com/question/4014727
#SPJ2
Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²) = 25 joules
Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²) = 100 joules
Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²) = 250 joules
Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters
Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg
Answer:
Clockwise and counter clockwises, depands.
Explanation:
The direction of current in a loop of wire in a magnatic field depands on the direction in which the loop is moved and the applied magnatic field.
this is determined by what is called right hand rule.
I will give one scenario, let's say that the loop is moved upwards and the applied magnatic field is into the page (if you drew the loop in 2D on a piece of paper), in this case the direction would be clockwise.
Answer: It eventually loses its stamina, and would come to a stop.
Explanation: