Answer:
The magnitude of the acceleration of the tip of the minute hand of the clock
.
Explanation:
Given that,
Length of minute hand = 0.55 m
Length of hour hand = 0.26 m
The time taken by the minute hand to complete one revelation is

We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


We need to calculate the magnitude of the acceleration of the tip of the minute hand of the clock
Using formula of acceleration

Put the value into the formula


Hence, The magnitude of the acceleration of the tip of the minute hand of the clock
.
Answer:
1.8m
Explanation:
Let the Elastics of the steel ASTM-36 
The strain of the bar when subjected to 150 MPa is

Therefore, if the bar elongates by 1.35 mm, then the original length L would be:

or 1.8m
Answer:
(a) m = 33.3 kg
(b) d = 150 m
(c) vf = 30 m/s
Explanation:
Newton's second law to the block:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass s (kg)
a : acceleration (m/s²)
Data
F= 100 N
a= 3.0 m/s²
(a) Calculating of the mass of the block:
We replace dta in the formula (1)
F = m*a
100 = m*3
m = 100 / 3
m = 33.3 kg
Kinematic analysis
Because the block moves with uniformly accelerated movement we apply the following formulas:
d= v₀t+ (1/2)*a*t² Formula (2)
vf= v₀+a*t Formula (3)
Where:
d:displacement in meters (m)
t : time interval in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
a= 3.0 m/s²
v₀= 0
t = 10 s
(b) Distance the block will travel if the force is applied for 10 s
We replace dta in the formula (2):
d= v₀t+ (1/2)*a*t²
d = 0+ (1/2)*(3)*(10)²
d =150 m
(c) Calculate the speed of the block after the force has been applied for 10 s
We replace dta in the formula (3):
vf= v₀+a*t
vf= 0+(3*(10)
vf= 30 m/s
Option A is the false statement.
Only materials that have never been part of a living thing can be recycled in nature.
In actual all living and non living thing can be recycled in nature.