Answer: The maximum possible speed v is √2( hν - Ф ) / m
Explanation: You could be referring to the provided explanation, despite the fact that the question isn't comprehensive. When a photon collides with the surface of any metal, it transmits all of its energy to the electron in the atom. The collision causes the electron to travel with a certain amount of kinetic energy. This is referred to as the photoelectric effect. The maximum kinetic energy is calculated using Einstein's equation for the photoelectric effect:
K.E. = hν - Ф
½ mv² = hν - Ф
Hence the maximum possible speed is:
v = √2( hν - Ф ) / m
For more information on the photoelectric effect refer to this link: brainly.com/question/25027428
#SPJ4
The correct answer is c because you want to be in a specific buissness
The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant

let's do it for this case:

the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator

so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
Answer: its mechanical energy
Explanation:
We can use the formula of the moment of inertia given by:

Where:
r = Distance from the point about which the torque is being measured to the point where the force is applied
F = Force
I = Moment of inertia
α = Angular acceleration
So:

Answer:
12 rad/s²