Answer:
a)W= - 720 J
b)ΔU= 330 J
Explanation:
Given that
P = 0.8 atm
We know that 1 atm = 100 KPa
P = 80 KPa
V₁ = 12 L = 0.012 m³ ( 1000 L = 1 m³)
V₂ = 3 L = 0.003 m³
Q= - 390 J ( heat is leaving from the system )
We know that work done by gas given as
W = P (V₂ -V₁ )
W= 80 x ( 0.003 - 0.012 ) KJ
W= - 0.72 KJ
W= - 720 J ( Negative sign indicates work done on the gas)
From first law of thermodynamics
Q = W + ΔU
ΔU=Change in the internal energy
Now by putting the values
- 390 = - 720 + ΔU
ΔU= 720 - 390 J
ΔU= 330 J
Answer:
The efficiency of Carnot's heat engine is 26.8 %.
Explanation:
Temperature of hot reservoir, TH = 100 degree C = 373 K
temperature of cold reservoir, Tc = 0 degree C = 273 K
The efficiency of Carnot's heat engine is
The efficiency of Carnot's heat engine is 26.8 %.
The conventional signal used by sailboats in conditions of reduced visibility such as heavy fog is one long blast followed by two short blasts.
The blasts help other boat operators locate one another's vessel in a condition where it is not easy to see. This signal is repeated in order to not only let others know of the vessel's position, but also help them know which way it is traveling. For example, if the blasts start to become distant, then the sailboat is travelling away from you.
Answer:
Work done = 422.45 kJ
Explanation:
given,
weight of equipment = 6 kN
coefficient of kinetic friction = 0.05
distance up to which it is pulled = 1000 m
constant acceleration = 0.2 m/s²
Work done by the camper = ?
actual acceleration acting a'
m a = m a' - μ mg
a' = a + μ g
a' = 0.2 + 0.05 x 9.8
a' = 0.69 m/s²
Work done = Force x distance
F = m a'

F = 422.44897 N
Work done = F x d
Work done = 422.44897 x 1000
Work done = 422449 J
Work done = 422.45 kJ