Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
_Award brainliest if helped!
Mechanical Advantage = Force by Hammer / Force by Nail = 160/40 = 4
Answer:
0.015 atm
Explanation:
The pressure of the gas can be calculated using Ideal Gas Law:

<u>Where:</u>
n: is the number of moles of the gas
R: is the gas constant = 0.082 L*atm/(K*mol)
V: is the volume of the container = 1.64 L
T: is the temperature
We need to find the number of moles and the temperature. The number of moles is:

<u>Where:</u>
M: is the molar mass of the N₂ = 14.007 g/mol*2 = 28.014 g/mol
m: is the mass of the gas = 0.226 g

Now, the temperature can be found using the following equation:
<u>Where:</u>
R: is the gas constant = 0.082 L*atm/K*mol = 8.314 J/K*mol
: is the root-mean-square speed of the gas = 182 m/s
By solving the above equation for T, we have:
Finally, we can find the pressure of the gas:

Therefore, the pressure of the gas is 0.015 atm.
I hope it helps you!