Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
<span>Ocean currents act much like a conveyer belt,
transporting warm water and precipitation from the equator toward the
poles and cold water from the poles back to the tropics. Thus, currents
regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface.</span>
AuthenticD3mon and I talked it over and agreed that
natural gas is the least polluting fossil fuel.
(See comments under his answer.)
The second and third laws of thermodynamics states that absolute zero cannot be reached. The correct option among all the options that are given in the question is the third option or option "C". Both the laws actually deal with the relations that exist between heat and other forms of energy. I hope the answer helps you.
In mechanics, the normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact, of the contact </span>force<span> exerted on an object . We calculate as follows:
</span>∑F along x = 0 = F - Fn
<span>
Fn = F = mg = 7.52(9.81) = 73.77 N <------OPTION B</span>