The purpose of the machine is to leverage its mechanical advantage such that the force it outputs to move the heavy object is greater than the force required for you to input.
But there's no such thing as a free lunch! When you apply the conservation of energy, the work the machine does on the object will always be equal to (in an ideal machine) or less than the work you input to the machine.
This means that you will apply a lesser force for a longer distance so that the machine can supply a greater force on the object to push it a smaller distance. That is the trade-off of using the machine: it enables you to use a smaller force but at the cost of having to apply that smaller force for a greater distance.
The answer is: The work input required will equal the work output.
Answer: Angle 59 degree
Explanation: Given that the
n1 = 1.0
n2 = 1.5
Øi = 35 degree
From Snell law, which says that
n1/n2 = sinØ1/ sinØ2
Substitute all the parameters into the formula
1/1.5 = sin 35/sinØ2
Cross multiply
Sin Ø2 = 1.5 sin35
SinØ2 = 1.5 × 0.573 = 0.860
Ø2 = sin^-1(0.860)
Ø2 = 59.36 degree
Ø2 = 59 degree ( approximately)
It has angle 59 degree when passing from air to glass
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical equation.
Answer:
1. 3 m
2. 27 s
Explanation:
1. "A car traveling at +33 m/s sees a red light and has to stop. If the driver can accelerate at -5.5 m/s², how far does it travel?"
Given:
v₀ = 33 m/s
v = 0 m/s
a = -5.5 m/s²
Unknown: Δx
To determine the equation you need, look for which variable you don't have and aren't solving for. In this case, we aren't given time and aren't solving for time. So look for an equation that doesn't have t in it.
Equation: v² = v₀² + 2aΔx
Substitute and solve:
(0 m/s)² = (33 m/s)² + 2(-5.5 m/s²) Δx
Δx = 3 m
2. "A plane starting from rest at one end of a runway accelerates at 4.8 m/s² for 1800 m. How long did it take to accelerate?"
Given:
v₀ = 0 m/s
a = 4.8 m/s²
Δx = 1800 m
Unknown: t
Equation: Δx = v₀ t + ½ a t²
Substitute and solve:
1800 m = (0 m/s) t + ½ (4.8 m/s²) t²
t ≈ 27 s
The formation of the outer planets are affected by their
distance from the sun with having them to maintain the lighter elements that
they are composed of such as the hydrogen and helium, having them far away will
also make their planet more cooler as the sun is distant from them.