Answer:
a)Velocity of car =v=16 m/s
b)Force against the track at point B=1.15*
N
Explanation:
Given mass of roller coaster=m=350 kg
Position of A=Ha=25 m
Position of B=Hb=12 m
Net potential energy=mg(ha-hb)
Net potential energy=(350)(9.80)(25-12)
Net potential energy=44590 J
Using energy conservation
net kinetic energy=net potential energy
(1/2)mv^2=mg(ha-hb)
m=350
velocity=v=16 m/s
b)There two force acting,centripetal force upward and gravity downward.
Thus net force acting will be
Net force=(mv^2/r)-mg
Net force=14933.33-3430
Net force=1.15*
N
Answer:
Yes.
Explanation: the magnitude of the force is extremely small because the masses of the students are small relative to Earth's mass.
Answer:
The normal stress is 10.7[MPa]
Explanation:
The normal stress can be calculated with the following equation:
![S_{norm} =\frac{F}{A} \\where:\\F= force [Newtons]\\A=area [m^2]\\S_{norm} = Normal stress [\frac{N}{m^{2} }] or [Pa]](https://tex.z-dn.net/?f=S_%7Bnorm%7D%20%3D%5Cfrac%7BF%7D%7BA%7D%20%5C%5Cwhere%3A%5C%5CF%3D%20force%20%5BNewtons%5D%5C%5CA%3Darea%20%5Bm%5E2%5D%5C%5CS_%7Bnorm%7D%20%3D%20Normal%20stress%20%5B%5Cfrac%7BN%7D%7Bm%5E%7B2%7D%20%7D%5D%20or%20%5BPa%5D)
The area of the rod can be calculated using the equation:
![A=\frac{\pi }{4}*d^{2} \\d=8[mm]=0.008[m]\\A=\frac{\pi }{4}*(0.008)^{2} \\A=5.02*10^{-5} [m^{2} ]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%2Ad%5E%7B2%7D%20%20%5C%5Cd%3D8%5Bmm%5D%3D0.008%5Bm%5D%5C%5CA%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%2A%280.008%29%5E%7B2%7D%20%20%5C%5CA%3D5.02%2A10%5E%7B-5%7D%20%5Bm%5E%7B2%7D%20%5D)
The force is the result of the mass multiplied by the gravity.
![F=55[kg]*9.81[m/s^{2} ] = 539.6[N]\\\\S_{norm} = 539.6/5.02*10^{-5} \\S_{norm} = 10.7*10^{6}[Pa] = 10.7[MPa]](https://tex.z-dn.net/?f=F%3D55%5Bkg%5D%2A9.81%5Bm%2Fs%5E%7B2%7D%20%5D%20%3D%20539.6%5BN%5D%5C%5C%5C%5CS_%7Bnorm%7D%20%3D%20539.6%2F5.02%2A10%5E%7B-5%7D%20%5C%5CS_%7Bnorm%7D%20%3D%2010.7%2A10%5E%7B6%7D%5BPa%5D%20%3D%2010.7%5BMPa%5D)
Answer:
0.306mm
Explanation:
The radius of the conductor is 3mm, or 0.003m
The area of the conductor is:
A = π*r^2 = π*(.003)^2 = 2.8*10^-5 m^2
The current density is:
J = 130/2.8*10^-5 = 4.64*10^6 A/m
According to the listed reference:
Vd = J/(n*e) = 4.64*10^6 / ( 8.46*10^28 * 1.6*10^-19 ) = 0.34*10^-6 m/s = 0.34mm/s
The distance traveled is:
x = v*t = 0.34 * .90 = 0.306 mm
Answer:
The answer is positively B.
There are so many base pairs that there are individual differences.
Confirmed by my Forensics test today.
Explanation: