Answer:
yes
Explanation:
they di because they have mass and wait
Answer:
1.72x10⁻⁵ g
Explanation:
To solve this problem we use the PV=nRT equation, where:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 25 °C ⇒ (25+273.16) = 298.16 K
And we <u>solve for n</u>:
- 1 atm * 5.7x10⁶ L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Finally we <u>convert moles of helium to grams</u>, using its <em>molar mass</em>:
- 4.29x10⁻⁶ mol * 4 g/mol = 1.72x10⁻⁵ g
The heat used in phase changes is calculated by multiplying the mass of the substance by the energy of the phase change. In this case, for liquid to boil, we would find total heat by multiply the mass of liquid by the latent heat of vaporization (Hvap). If we are instead given the Hvap and the total heat of 1 kJ, we would divide 1 kJ by the Hvap (which is usually in kJ/kg) to get the mass of liquid boiled (in kg).