hope it's help you ok have a good day
Answer:
//Program was implemented using C++ Programming Language
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
unsigned int second_a(unsigned int n)
{
int r,sum=0,temp;
int first;
for(int i= 1; I<=n; i++)
{
first = n;
//Check if first digit is 3
// Remove last digit from number till only one digit is left
while(first >= 10)
{
first = first / 10;
}
if(first == 3) // if first digit is 3
{
//Check if n is palindrome
temp=n; // save the value of n in a temporary Variable
while(n>0)
{
r=n%10; //getting remainder
sum=(sum*10)+r;
n=n/10;
}
if(temp==sum)
cout<<n<<" is a palindrome";
else
cout<<n<<" is not a palindrome";
}
}
}
Explanation:
The above code segments is a functional program that checks if a number that starts with digit 3 is Palindromic or not.
The program was coded using C++ programming language.
The main method of the program is omitted.
Comments were used for explanatory purpose.
Explanation:
Joey has a car that uses the hand crank to open the windows. Joey is wondering where the energy comes from to open the windows.The sunHuman-powered energy from JoeyThe hand crankThe moving car
Answer:
When the brakes are applied the in the typical double transverse wishbone front suspension, it "drives" the car ground due to the setting of the link-type system pivot points on the lower wishbone are have parallel alignment to the road
Explanation:
In order to minimize the car's reaction to the application of the brakes, the front and rear pivot are arranged with the lower wishbone's rear pivot made to be higher than the front pivot as such the inclined wishbone torque results in an opposing vertical force to the transferred extra weight from the back due to breaking.
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA