Answer:
See explanation
Explanation:
2HCl(aq) + CaCO3(aq) ------->CaCl2(aq) + CO2(g) + H2O(l)
Number of moles of acid present = 50/1000 * 0.15 = 0.0075 moles
Number of moles of calcium carbonate = 0.054g/100 g/mol = 0.00054 moles
2 moles of HCl reacts with 1 mole of calcium carbonate
x moles of HCl reacts with 0.00054 moles of calcium carbonate
x = 2 * 0.00054/1
x = 0.00108 moles of HCl
Amount of acid left = 0.0075 moles - 0.0075 moles = 0.00642 moles
Reaction of HCl and NaOH
HCl(aq) + NaOH(aq) ------> NaCl(aq) + H2O(l)
Since the reaction is in the mole ratio of 1:1
0.00642 moles of HCl is neutralized by 0.00642 moles of NaOH
The climate would become colder...
Atomic number is same as the number of protons in the element which is further equal to the number of electrons. As the number of electrons increases in the element, the atomic number of the element also increases.
In periodic table, elements are arranged in the groups, and these groups are columns starting from 1 to 18, elements are arranged in increasing order of atomic number. Elements are placed with difference of one atomic number.
First four elements present in the periodic table is:
atomic number is one (1).
atomic number is two (2).
atomic number is three (3).
atomic number is four (4).
Thus, the series of atomic numbers that represents the ordering of consecutive elements within the periodic table is the last option - 1, 2, 3, 4...
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C