Answer:
2 kg
Explanation:
Acceleration = 5 m/s^2
Force = 10 N
Force = mass * acceleration
mass = force / acceleration
mass = 10 / 5
mass = 2 kg
Answer:
Option (B) is correct.
Explanation:
Given that the molecules of hydrogen gas (
) react with molecules of oxygen gas (
) in a sealed reaction chamber to produce water (
).
The governing equation for the reaction is

From the given, the only fact that can be observed that 2 moles of
and 1 mole of
reacts to produce 2 moles of
.
As the mass of 1 mole of
grams ... (i)
The mass of 1 mole of
grams ...(ii)
The mass of 1 mole of
grams (iii)
Now, the mass of the reactant = Mass of 2 moles of
+ mass 1 mole of 
[ using equations (i) and (ii)]
grams.
Mass of the product = Mass of 2 moles of 
[ using equations (iii)]
=36 grams
As the mass of reactants = mass of the product.
So, mass is conserved.
Hence, option (B) is correct.
Given: Velocity of light c = 3.00 x 10⁸ m/s
Frequency f = 7.65 x 10⁷/s
Required: Wavelength λ = ?
Formula: λ = c/f
λ = 3.00 x 10⁸ m/s/7.65 x 10⁷/s
λ = 3.92 m
The mass is 222g. No, it is less than 1kg. There are 1000 grams in a kilogram so it would be 0.222kg. Hope this Helps :D
According to the given statement Final velocity when they stick together is 8.735i^ + 11.25j^
<h3>What is collision and momentum?</h3>
The unit of momentum is kg ms -1. Momentum is a vector parameter that is influenced by the object's direction. During collisions involving objects, momentum is a relevant concept. The final velocity before a collision between two objects equals the total motion after the impact (in the absence of external forces).
<h3>Briefing:</h3>
From conservation of momentum
Initial momentum = final momentum
m u +M U =(m+M) V
2000×25 i^ +1500×30 j^ =(2000+1500) V
V = 8.735i^ + 11.25j^
Final velocity when they stick together is 8.735i^ + 11.25j^
To know more about Collide visit:
brainly.com/question/27993473
#SPJ4
The complete question is -
A 2000 kg truck is moving eastward at 25 m/s. it collides inelastically with a 1500 kg truck traveling southward at 30 m/s. they collide at the intersection. Find the direction and magnitude of velocity of the wreckage after the collision, assuming the vehicles stick together after the collision.