Answer:
105.8 g of Na would be required
Explanation:
Let's think the reaction:
2Na(s) + Cl₂(g) → 2NaCl (s)
1 mol of chlorine reacts with 2 moles of sodium
Then, 2.3 moles of Cl₂ would react with (2.3 .2) / 1 = 4.6 moles
Let's determine the mass of them.
4.6 mol . 23 g/mol = 105.8 g
Answer:
Total partial pressure, Pt = 821 mm Hg
Partial pressure of Helium, P1 = 105 mm Hg
Partial pressure of Nitrogen, P2 = 312 mm Hg
Partial pressure of Oxygen, P3 = ? mm Hg
According to Dalton's law of Partial pressures,
Pt = P1 + P2 + P3
So, <u>P3 = 404 mm Hg</u>
River Banks? I'm not completely sure but hope this helps!
As the shaft inside the generator<span> turns, an </span>electric<span> current is produced in the wire. The </span>electric generator<span> is converting mechanical, moving energy into </span>electrical<span>energy.
-google search</span>
Above it says the molecular weights are
NH3- 17g/mol and SF6-146 g/mol
Well 1 mole of SF6 is 146.048 grams (i added hte atomic masses of each element). So then the number of moles in 0.85 grams would be 0.00582000438 moles.
<span><span><span>= 1mole / </span><span>146.048g *</span></span> 0.85g</span>
so we would need 0.00582000438 moles of NH3 to have the same number of molecules.
One mole of NH3 is 17.030519999989988 grams (i added each atoms mass). so 0.00582000438 moles of NH3 would be:
<span><span><span>= 17.030519999989988 g / </span><span>mole * </span></span>0.00582000438moles</span>
that equals 0.09911770099 grams.
so 0.09911770099 grams is the answer if you round that you get about 0.1 grams