Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol
Answer:
A. Occur in gaseous and liquid state
Explanation:
The choice that is not a characteristic of minerals is that minerals occur in gaseous and liquid state.
All minerals are solid inorganic compounds.
- A mineral is an inorganic compound that is formed naturally.
- They have a definite and specific chemical composition.
- Minerals are the building blocks of rocks.
- When minerals aggregates together, they form different rock types.
- There is no known mineral that is in fluid state.
- All minerals are solids.
- Examples are quartz, kaolinite, gypsum e.t.c
Answer:
FLASK B WHICH CONTAINS CO2 HAS THE HIGHEST NUMBER OF MOLECULES AS IT CONTAINS THE HIGHEST MOLECULAR MASS OF 44 G/MOL.
Explanation:
Flask A contains CH4
Flask B contaims CO2
Flask C contains N2
To know the flask containing the largest number of molecules, we find the molar mass of the molecules in the flask and the largest is the one with the highest number of the relative molecular mass.
Molecular Mass of CH4 (C = 12, H =1) = ( 12 + 1*4) g/mol
= 16 g/mol
Molecular mass of CO2 (C= 12, 0= 16) = (12 + 16*2) g/mol
= 12 + 32 g/mol
= 44 g/mol
Molecular mass of N2 (N=14) = 14 * 2 g/mol
= 28 g/mol
Hence, the flask with the largest number of molecules is the flask with the highest relative molecular mass. The highest molecular mass is 44 g/mol and it is for the gas CO2 in Flask B.
So therefore, Flask B has the highest number of molecules in it.
The key to most "how do I separate." questions is solubility.
The trick is to add a liquid that will only dissolve one substance but not another.
Let's say you had a beaker full of sand, table salt (NaCl), and acetanilide. Is there anything you can add that would only dissolve one of these three substances?
Yes, there is! Acetanilide like most organic compounds, isn't soluble in water. But salt is soluble in water. So to the mixture, I would add water, and then pass the water through a filter. The filter paper will "catch" the sand and acetanilide, but the table salt will remain dissolved in the water. If you then let that water evaporate (either via boiling or under vacuum), you will recover your salt.
So now, how to do you separate the sand from the acetanilide? Sand isn't really soluble in anything, but acetanilide is soluble in organic solvents, such as ethanol. So to the mixture of sand and acetanilide, add ethanol, and pass it through a filter. The sand will once again get stuck in the filter paper, and your acetanilide will be dissolved in ethanol. Remove the ethanol (via vacuum, or rotovap) and you will be left with acetanilide.