<h3>
Answer:</h3>
0.012 dekameters (dkm)
<h3>
Explanation:</h3>
<u>We are given;</u>
Required to identify the measurements that is not equivalent to 120 cm.
- Centimeters are units that are used to measure length together with other units such as kilometers(km), meters (m), millimeters (mm), dekameters (dkm), etc.
- These units can be inter-converted to one another using suitable conversion factors.
- To do this, we are going to have a table showing the suitable conversion factor from one unit to another.
Kilometer (km)
10
Decimeter (Dm)
10
Hectometer (Hm)\
10
Meter (m)
10
Dekameter (dkm)
10
Centimeter (cm)
10
Millimeter (mm)
Therefore;
To convert cm to km
Conversion factor is 10^5 cm/km
Thus;
120 cm = 120 cm ÷ 10^5 cm/km
= 0.0012 km
To convert cm to dkm
Conversion factor is 10 cm/dkm
Therefore,
120 cm = 120 cm ÷ 10 cm/dkm
= 12 dkm
To convert cm to m
The suitable conversion factor is 10^2 cm/m
Thus,
120 cm = 120 cm ÷ 10^2 cm/m
= 1.2 m
To convert cm to mm
Suitable conversion factor is 10 mm/cm
Therefore;
120 cm = 120 cm × 10 mm/cm
= 1200 mm
Therefore, the measurement that is not equal to 120 cm is 0.012 dkm
Eight because an octet has 8 electrons and when it’s full it’s stable. If it’s not full, it’s constantly sharing or borrowing electrons.
Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Answer:
heat can move from any source but if we are being legitimate it moves from convection
Explanation:
Gold is a chemical element with symbol Au (from Latin: aurum) and atomic number 79, making it one of the higher atomic number elements that occur naturally. In its purest form, it is a bright, slightly reddish yellow, dense, soft, malleable, and ductile metal.