Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Answer:
Sample response:
The costs of using both renewable and nonrenewable resources depend on the extent of the use. If renewable resources are managed wisely, the use of the resource will not exceed the rate at which it is replenished. In this instance the cost of using renewable resources can be minimized, if not entirely eliminated. The cost of using nonrenewable resources is harder to minimize because nonrenewable resources cannot be replenished at the rate at which they are used. The environmental impact of using nonrenewable resources such as fossil fuels is greater than just the loss of the resource itself. Other impacts such as acid rain, global warming, and atmospheric pollution can result from the use of nonrenewable resources.
Explanation:
2021 edge
have a nice day
8.50 moles is equal to 5.1187×10²⁴ atoms of Ca.
<u>Explanation:</u>
We have to multiply the moles of Ca by the Avogadro's number:
= 6.022×10²³
So the number of atoms:
= 8.5 moles × 6.022×10²³atoms / mol
= 5.1187×10²⁴ atoms
Hence the 8.50 moles is equal to 5.1187×10²⁴ atoms of Ca.