The specific heat is the amount of heat per unit mass required to raise the temperature to 1 degree Celsius. (This is from google)
The answer is A to B because the distance is rising rapidly as seen by the steep slope segment A to B had
4. Molar mass of silver m Ms~=108 g/mol
Hence there are n=54*(1/108)=0.5 mols of Silver in 54 grams of Silver.
5. 6.3*(108/1)=680.4g
6. Avogadro's number : Na~=6.022×10^23<span>. </span>
6.0*(6.022*10^23/1)=36.132*10^23 atoms
7. Molar mass of Krypton : Mk=84 g/mol
112/84=1.33 moles of Kr
8. 1.93*10^24*(1/(6.022×10^23))=3.2 moles KF
9. Molar mass of Silicon : Ms=28 g/mol
86.2*(1/28)*(6.022×10^23/1)=18.5*10^23 atoms of silicon
10. Molar mass of Magnesium : M1=24 g/mol
4.8*10^24*(1/(6.022×10^23))*(24/1)=191 g Mg
First, find the number of moles of UF6
Avagadro's number = 6.023 x 10^23
Number of moles = 8.0 x 10^26 / Avagadro's number = 8.0 x 10^26 / 6.023 x 10^23 = 1.328 x 10³ moles
Molecular weight of UF6 = Molecular weight of U (238.02891) + Molecular weight of F6 (6 x 18.9984032) = 238.02891 + 113.9904192 = 352.0193292 g/mol
Therefore mass of 8.0 x 10^26 UF6 molecules = 352.0193292 g/mol x 1.328 x 10³ moles = 467.481669 x 10³ grams