Answer:
v_f = -25.9 m/s
Explanation:
- The complete question is as follows:
" Assume that a pitcher throws a baseball so that it travels in a straight line parallel to the ground. The batter then hits the ball so it goes directly back to the pitcher along the same straight line. Define the direction the pitcher originally throws the ball as the +x direction.
Now assume that the pitcher in Part D throws a 0.145-kg baseball parallel to the ground with a speed of 32 m/s in the +x direction. The batter then hits the ball so it goes directly back to the pitcher along the same straight line. What is the ball's velocity just after leaving the bat if the bat applies an impulse of −8.4N⋅s to the baseball?"
Given:
- mass of baseball m = 0.145 kg
- Speed before impact v_i = 32 m/s
- Speed after impact v_f
- Impulse applied by the bat I = - 8.4Ns
Find:
What is the ball's velocity just after leaving the bat
Solution:
- Impulse is the change in linear momentum of the ball according to Newton's second law of motion:
I = m* ( v_f - v_i )
- Taking the + from pitcher to batsman and - from batsman to pitcher.
- Plug in the values:
-8.4 = 0.145* ( v_f - (32) )
v_f = -57.93103 + 32
v_f = -25.9 m/s
Answer;
= 0.244 seconds
Explanation;
500 rpm is equivalent to; 1500 × 2π radians per minute
= 9424.8 rad/minute
To get revolutions per second we divide by 60
= 9424.8/60
= 157.08 radians per second.
Then we divide by 64.3 rad/s^2 to get time;
= 157.08/64.3
= 0.244 seconds.
The gravitational force is a balance between centripetal and centrifugal force that keeps the planets in their orbits when they are in motion. The gravitational force is a factor of the masses of the Earth and moon and the distance between them. If there were no gravitational force, the moon would stay out of the circular path and follow the direction as shown in the picture.
Answer:
338N
Explanation:
Use the formula
f is the frequency, T the string tension, M the mass, and L the length
convert units to seconds, kilograms, meters
now solve for T
sqrt(T/.005) = 65*4 = 260
T = 338N