A small, green frog wearing a strawberry on its head as a hat
Answer:
Increasing atomic number - True
Explanation:
The modern table is based on Mendeleev’s table, except the modern table arranges the elements by increasing atomic number instead of atomic mass.
The Atomic number is the number of protons in an atom, and this number is unique for each element. For example, Hydrogen has an atomic number of 1, Calcium has an atomic number of 20.
In the modern periodic table the elements are further arranged into:
- rows, called periods, in order of increasing atomic number. Elements in the same periods have the same number of shells.
- vertical columns, called groups, where the elements have similar properties. Elements in the same group has the same number of valency (outermost number of electrons)
First question. Applying ideal gas equation PV=nRT, P= 101.3 x 10³Pa = 1atm. therefore, 1 x 260 x 10^-3 = n x 0.082 x 294.( Temperature in kelvin=273+21). n = 0.01 moles. Volume of gas at STP= n x 22.4 = 0.01x22.4 = 0.224L. Hope this helps
In a flame photometric analysis, salt solution is first vaporized using the heat of flame, followed by this electrons from valance shell gets excited from ground state to excited state. Followed by this de-excitation of electron bring backs electrons to ground state. This process is accompanied by emission of photon. The photon emitted is characteristic of an element, and number of photons emitted can be used for quantitative analysis.
<span>Following are the investigative question that you can answer by doing this experiment.
</span>1) What information can be obtained from the colour of flame?
2) <span>State the relationship between wavelength, frequency, and energy?
</span><span>3) Can you identify the metal present in unknown sample provided?
4) How will you identify amount of metal present in sample solution?
5) </span><span>Why do different chemicals emit light of different colour?</span><span>
</span>
In descending order from top:
E
F
D
A
C
B
All you really need to do is remember the symbols of each, and you’ve got it.