Answer:
94.1 %
Explanation:
We firstly determine the equation:
2H₂O + O₂ → 2H₂O₂
2 moles of water react to 1 mol of oxygen in order to produce 2 moles of oxygen peroxide.
We convert the mass of oxygen to moles:50 g . 1mol /32g = 1.56 mol
Certainly oxygen is the limiting reactant.
2 moles of water react to 1 mol of oxygen.
13 moles of water may react to 13/2 = 6.5 moles. (And we only have 1.56)
As we determine the limiting reactant we continue to the products:
1 mol of O₂ can produce 2 moles of H₂O₂
Then 1.56 moles of O₂ will produce (1.56 . 2) = 3.125 moles
We convert the moles to mass: 3.125 mol . 34 g/mol= 106.25 g
That's the 100% yield or it can be called theoretical yield.
Percent yield = (Yield produced / Theoretical yield) . 100
(100g / 106.25 g) . 100 = 94.1 %
Hey there!
(NH₄)₂SO₄ = 14 * 2 + 1 * 8 + 32+ 16 * 4 => 132 amu
The answer is storm surge
The location of the valence electron or the outermost electron is expressed in quantum numbers. There are five quantum numbers: prinicipal (n), angular momentum (l), magnetic (ms) and magnetic spin (ms) quantum numbers. This is based on Bohr's atomic model where electrons orbit around the nucleus. These electrons are in the orbitals with specific energy levels. Starting from energy level 1 that is closest to the nucleus, the energy level decreases to 2, 3, 4, 5, 6, and 7. These energy level numbers represent the principal quantum number. Within each orbital also contains subshell. From increasing to decreasing order, these subshells are the s, p, d and f subshells. These subshells represent the angular momentum quantum numer. Specifically, s=0, p=1, d=2 and f=3. Therefore, if the electron is in the orbital 5p, the quantum number would be: 5, 1. Applying these, the correct pairing would be:
2p: n=2. l=1