When magnesium is burned, it reacts with oxygen in air not with the fire. The fire is the energy needed for the reaction to happen. Magnesium reacts with oxygen forming magnesium oxide. The light emitted from the reaction is because the reaction produced a lot of heat.
The formula for density is:
D = m/v
We can use the formula to figure out the mass because we already know two of the three values (we are given the density and volume), so we only have to solve for <em>m. </em>If we plug our given values into the formula, we get:
2.70 = m / 264
Now, all we need to do is solve for <em>m</em>. The goal is to get <em>m</em> on one side of the equation, and all we have to do is multiply each side of the equation by 264:
264 × 2.70 = (m÷264) × 264
264 × 2.70 = m
m = 712.8
The mass of the piece of aluminum is 712.8 grams.
Answer:
D. 0.3 M
Explanation:
NH4SH (s) <--> NH3 (g) + H2S (g)
Initial concentration 0.085mol/0.25L 0 0
Change in concentration -0.2M +0.2 M +0.2M
Equilibrium 0.035mol/0.25 L=0.14M 0.2M 0.2M
concentration
Change in concentration (NH4SH) = (0.085-0.035)mol/0.25L =0.2M
K = [NH3]*[H2S]/[NH4SH] = 0.2M*0.2M/0.14M ≈ 0.29 M ≈ 0.3M