Answer:
The answer to your question is below
Explanation:
Data
Substance = NaCl
moles of NaCl = 49
volume = 150 ml
Process
Molarity is a unit of concentration that makes a relation of the moles of a substance and the volume.
Molarity = moles / volume (L)
1.- Convert 150 ml to L
1000 ml ------------------ 1 L
150 ml ----------------- x
x = (150 x 1) / 1000
x = 0.15 L
2.- Substitution
Molarity = 49 / 0.15
Molarity = 326. 7
I have a doubt if the number of moles is 49 moles or 49μmoles
Answer:
<h3>... :-!...................nose...........</h3>
Answer:
12.6.
Explanation:
- We should calculate the no. of millimoles of KOH and HCl:
no. of millimoles of KOH = (MV)KOH = (0.183 M)(45.0 mL) = 8.235 mmol.
no. of millimoles of HCl = (MV)HCl = (0.145 M)(35.0 mL) = 5.075 mmol.
- It is clear that the no. of millimoles of KOH is higher than that of HCl:
So,
[OH⁻] = [(no. of millimoles of KOH) - (no. of millimoles of HCl)] / (V total) = (8.235 mmol - 5.075 mmol) / (80.0 mL) = 0.395 M.
∵ pOH = -log[OH⁻]
∴ pOH = -log(0.395 M) = 1.4.
∵ pH + pOH = 14.
∴ pH = 14 - pOH = 14 - 1.4 = 12.6.
Answer:
The reason is because Flagstaff is at a higher elevation than Phoenix.
Explanation:
The air is thinner at higher elevations. You can google Flagstaff's elevation compared to Phoenix but the simple answer is that air is thinner at higher elevations and some people used to 'thicker' air find it harder to breath, especially after some strenuous exercise.
Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you