Answer:
a) 38.27 b) 322.5°
c) 126.99 d) 1.17°
e) 62.27 e) 139.6°
Explanation:
First of all we have to convert the coordinates into rectangular coordinates, so:
a=( 43.3 , 25)
b=( -48.3 , -12.94)
c=( 35.36 , -35.36)
Now we can do the math easier (x coordinate with x coordinate, and y coordinate with y coordinate):
1.) a+b+c=( 30.36 , -23.3) = 38.27 < 322.5°
2.) a-b+c=( 126.96 , 2.6) = 126.99 < 1.17°
3.) (a+b) - (c+d)=0 Solving for d:
d=(a+b) - c = ( -40.36 , 47.42) = 62.27 < 139.6°
<span>A. </span>Let’s
say the horizontal component of the velocity is vx and the vertical is vy. <span>
Initially at t=0 (as the mug leaves the counter) the
components are v0x and v0y.
<span>v0y = 0 since the customer slides it horizontally so applied
force is in the x component only.
<span>The equations for horizontal and vertical projectile motion
are:
x = x0 + v0x t
y = y0 + v0y t - 1/2 g t^2 = y0 - 1/2 g t^2 </span></span></span>
Setting the origin to be the end corner of the
counter so that x0=0 and y0=0, hence:
x = v0x t
y = - 1/2 g t^2
Given value are: x=1.50m and y=-1.15m (y is
negative since mug is going down)
<span>1.50m = v0x t
----> v0x= 1.50/t</span>
<span>-1.15m = -(1/2) (9.81) t^2 -----> t =0.4842 s</span>
Calculating for v0x:
v0x = 3.10 m/s
<span>B. </span>v0x
is constant since there are no other horizontal forces so, v0x=vx=3.10m/s
vy can be calculated from the formula:
<span>vy = v0y + at where a=-g
(negative since going down)</span>
vy = -gt = -9.81 (0.4842)
vy = -4.75 m/s
Now to get the angle below the horizontal, tan(90-Ø) = -vx/vy
tan(90-Ø )= 3.1/4.75
Ø =
56.87˚<span> below the horizontal</span>
Answer:
the answer is 20 neutrons
Explanation:
Answer:
When a disaster is declared, the Federal government, led by the Federal Emergency Management Agency (FEMA), responds at the request of, and in support of, States, Tribes, Territories, and Insular Areas and local jurisdictions impacted by a disaster.
Explanation:
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>QUESTION)</u></h3>
According to the second Newton's Law,
<em>✔ We have : F = m x a ⇔ m = F/a </em>
The mass of the object is therefore 200 kg.