N= energy efficiency pout means output and pin means input the reason this would show efficiency is because your output should be greater then your input and because depending on how small your number is after your division will tell you how efficient it is you want a big number.
Answer:
yes
Explanation:
because motion is relevant
Answer:
Ec = 6220.56 kcal
Explanation:
In order to calculate the amount of Calories needed by the climber, you first have to calculate the work done by the climber against the gravitational force.
You use the following formula:
(1)
Wc: work done by the climber
g: gravitational constant = 9.8 m/s^2
M: mass of the climber = 78.4 kg
h: height reached by the climber = 5.42km = 5420 m
You replace in the equation (1):
(2)
Next, you use the fact that only 16.0% of the chemical energy is convert to mechanical energy. The energy calculated in the equation (2) is equivalent to the mechanical energy of the climber. Then, you have the following relation for the Calories needed:

Ec: Calories
You solve for Ec and convert the result to Cal:

The amount of Calories needed by the climber was 6220.56 kcal
Answer:
It is called force of friction
Explanation:
The force of friction is a force that acts between two objects whose surfaces are in contact with each other.
Consider the typical case of an object sliding along a certain surface. There are two types of frictions:
- Static friction: this is the force of friction that acts when the object is not in motion yet. If you push the object forward with a force F, the object will not move immediately, but it will "oppose" to this motion with a force of static friction exactly equal to the push applied:

However, this force of static friction has a maximum value, which is given by

where
is the coefficient of static friction
N is the normal reaction exerted by the surface on the object
So, when
becomes greater than
, the static friction is no longer able to balance the push applied, and the object will start sliding forward.
- Kinetic friction: this is the force of friction that acts when the object is already in motion. Its magnitude is given by

where
is the coefficient of kinetic friction, and its value is generally smaller than
. The direction of this force is also opposite to the direction of motion of the object.
Answer:

Explanation:
The given function is

Now h = the height from the surface of the Earth
Here the building is 458 m tall


So,
