Answer:
The highest vertical position is where your maximum potential energy lies. At the highest altitude point of course ! This is when the kinetic energy is only due to horizontal motion (since the vertical component reaches zero).
Explanation:
i looked it up ok
Answer:
110.9 m/s²
Explanation:
Given:
Distance of the tack from the rotational axis (r) = 37.7 cm
Constant rate of rotation (N) = 2.73 revolutions per second
Now, we know that,
1 revolution = radians
So, 2.73 revolutions =
Therefore, the angular velocity of the tack is,
Now, radial acceleration of the tack is given as:
Plug in the given values and solve for . This gives,
Therefore, the radial acceleration of the tack is 110.9 m/s².
Answer:
l= 3.002 cm
Explanation:
Given that
n= 70 turns
B= 1.2 T
θ= 15°
I= 1.5 A
τ = 0.0294 N⋅m
Lets take length of sides is l.
We know that
τ = n I A B sin θ
Area of square ,A= l²
Now by putting the value
τ = n I A B sin θ
0.0294 = 70 x 1.5 x l² x 1.2 x sin 15°
l² = 0.000901 m²
l² = 9.01 cm²
l= 3.002 cm
To calculate the horizontal distance traveled by the shot if it leaves the athlete's hand at a height of 2.20 above the ground we can get the root of the quad equation for time are t=-0.24 or t =1.84 taking the t = 1.84, so the equation will be:
x = 15.6cos(30) * 1.86, x = 24.79m