Answer: The density of Ammonia is 0.648 g/l
Explanation:
Density = Mass/ Volume
Mass of one mole of Ammonia (NH3) = 17.031g
Volume =?
Using the ideal gas law we can determine the volume.
PV = nRT
P = 0.913 atm, V= ?, n = 1, R = 0.08206 L.atm/K, and T= 293K
Make V the subject of the formular, we then have;
V= nRT/ P = 1 mol x 0.08206 L.atm/ K.mol x 293 / 0.913 atm
V = 24.04358/ 0.913 = 26.3L
Having gotten the value of Volume in this question, we then go back to solve for density.
Density = Mass/ Volume
17.031g/ 26.3L = 0.64756 ≈ 0.648 g/l
ANSWER: receptor-meditated endocytosis
I’m not sure if this is what you’re looking for but this is correct. Next time please add the full question and possible answers. HOPE this helps someone please leave thanks if so.
Sodium- Na
most active element- Fluorine
lightest element- Hydrogen
I would say A but I am not sure
<span>In thermodynamics, the internal energy of a thermodynamic system, or a body with well-defined boundaries, denoted by U, or sometimes E, is the total of the kinetic energy due to the motion of molecules (translational, rotational, vibrational) and the potential energy associated with the vibrational and electric energy of atoms within molecules or crystals. It includes the energy in all the chemical bonds, and the energy of the free, conduction electrons in metals.</span>