Answer: The equation for kinetic energy is 
Explanation:
Kinetic energy is the energy possessed by the virtue of object's motion. It is defined as the work needed to move a body of a given mass from rest to its velocity.
Mathematically,

where,
m = mass of the body
v = velocity of the body.
Hence, above equation relates kinetic energy to the mass and velocity of the body.
32.8 g of Butane is required and 99.3 g of CO₂ is produced
<u>Explanation:</u>
The above mentioned reaction can be written as,
C₄H₁₀(g) + 13 O₂(g) → 4CO₂(g) + 5 H₂O(g) where ΔH (rxn)= -2658 kJ
It is given that 1.5 × 10³ kJ of energy is produced, the original reaction says that 2658 kJ of heat is produced, which means that less than one mole of butane is used in the reaction.
That is
of butane reacted
Now this moles is converted into mass by multiplying it with its molar mass = 0.564 mol × 58.122 g / mol
= 32.8 g of butane.
Mass of CO₂ produced = 0.564 ×44.01 g /mol × 4 mol
= 99.3 g of CO₂
Thus 32.8 g of Butane is required and 99.3 g of CO₂ is produced
Answer:
Hey buddy, here is your answer. Hope it helps you.
Explanation:
The force stopping the object's motion might be an obvious one - the ground! Friction is a force that slows or stops motion. Friction is the resistance to motion created by two objects rubbing against each other (the sled and the snow, for instance). Even air causes friction.
Answer:
Higher oxidation state metals form stronger bong with ligands
Explanation:
Ligand strength are based on oxidation number, group and its properties
The structure will be:
H₃C-CH₂-CH=CH-CH₂-CH₃
This class of compounds is known or referred to as alkenes. Alkenes are unsaturated hydrocarbons that contain a carbon-carbon double bond. The present of this double bond alters the properties of alkenes rom alkanes.