The mass of whole blood is 0.51 kg.
Given data:
The dimensions of container is 125 mmx 110 mm x 35 mm.
From the chart, the density of whole blood at 37 C is,

The volume of container can be calculated as,

The mass of whole blood will be,

Thus, the mass of whole blood is 0.51 kg.
Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
1. No they aren’t because they all belong to different sports and are used differently
In order to give a spaceship at rest in a specific reference frame s a speed increment of 0.500c, seven increments are required. Then, in this new frame, it receives an additional 0.500c increment.
The speed of an object, also known as v in kinematics, is a scalar quantity that refers to the size of the change in that object's position over time or the size of the change in that object's position per unit of time. The distance travelled by an object in a certain period of time divided by the length of the period gives the object's average speed in that period.
The spacecraft moves at v1 = 0.5c after the initial increment.The equation becomes V2 = V+V1/1+V*V1/c after the second one. 2 V2 = 0.5c+0.50c/1+(0.50c)^2/c^ 2 = 0.80c
Likewise, V3 = 0.929c
V4 = 0.976c
V5 = 0.992c
V6 = 0.99c
V7 = 0.999c
Learn more about speed here
brainly.com/question/28224010
#SPJ4