150*4=600
So the answer is 600
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).
Integrating the velocity equation, we will see that the position equation is:
<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:
To get the position equation we just need to integrate the above equation:
Then:
Replacing that in our integral we get:
Where C is a constant of integration.
Now we remember that
Then we have:
To find the value of C, we use the fact that f(0) = 0.
C = -1 / 3
Then the position function is:
Integrating the velocity equation, we will see that the position equation is:
To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
Answer:
Explanation:
λ=c x²
c = λ / x²
λ is mass / length
so its dimensional formula is ML⁻¹
x is length so its dimensional formula is L
c = λ / x²
= ML⁻¹ / L²
= ML⁻³
B )
We shall find out the mass of the rod with the help of given expression of mass per unit length and equate it with given mass that is M
The mass in the rod is symmetrically distributed on both side of middle point.
we consider a small strip of rod of length dx at x distance away from middle point
its mass dm = λdx = cx² dx
By integrating it from -L to +L we can calculate mass of whole rod , that is
M = ∫cx² dx
= [c x³ / 3] from -L/2 to +L/2
= c/3 [ L³/8 + L³/8]
M = c L³/12
c = 12 M L⁻³
C ) Moment of inertia of rod
∫dmx²
= ∫λdxx²
= ∫cx²dxx²
= ∫cx⁴dx
= c x⁵ / 5 from - L/2 to L/2
= c / 5 ( L⁵/ 32 +L⁵/ 32)
= (2c / 160)L⁵
= (c / 80) L⁵
= (12 M L⁻³/80)L⁵
= 3/20 ML²
=
=