Answer:
311,850 N
Explanation:
We can solve the problem by using Newton's second law:

where
F is the net force applied on an object
m is the mass of the object
a is its acceleration
For the object in this problem,
m = 27 kg

Substituting, we find the force required:

Answer:
0.0192A
Explanation:
Since, the reading of the galvanometer is 0 A, the voltage across the resistance R will be:
Step 1
VR = V2
VR = 3.00v
Step 2
Calculating the current through the resistance R as below,
IR = V1 - V2 /R1
IR = 12 - 3 /468
IR =0.0192A
Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V
Answer:
The time taken to reach the maximum height is 3.20 seconds
Explanation:
The given parameters are;
The initial height from which the volcano erupts the lava bomb = 64.4 m
The initial upward velocity of the lava bomb = 31.4 m/s
The acceleration due to gravity, g = 9.8 m/s²
The time it takes the lava bomb to reach its maximum height, t, is given by the following kinematic equation as follows;
v = u - g·t
Where;
v = The final velocity = 0 m/s at maximum height
u = The initial velocity = 31.4 m/s
g = The acceleration due to gravity = 9.8 m/s²
t = The time taken to reach the maximum height
Substituting the values gives;
0 = 31.4 - 9.8 × t
∴ 31.4 = 9.8 × t
t = 31.4/9.8 ≈ 3.204
The time taken to reach the maximum height rounded to three significant figures = t ≈ 3.20 seconds
Answer:
hsjishhdhjs jdjyshskksndhu