Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
1. Always be the bigger person
2. Violence is never the answer
3. Don’t fight fire with fire
Answer:
x(t) = 0.077cos(6.455t)
Explanation:
If the spring can be stretched 0.2 m by a force of 50 N, then the spring constant is:
k = 50 / 0.2 = 250 N/m
The equation of simple harmonic motion is as the following:

where 
We also know that the initial velocity is 0.5 m/s, which is also the maximum speed at the equilibrium:


is the initial phase
Therefore, the position of the mass after t seconds is
x(t) = 0.077cos(6.455t)
Answer:
D. The sphere the disk and the hoop
Explanation:
This is because the sphere has inertial of
2/5mR²
Disk 1/2mR²
Hope mR²
So these are moment of inertial which is resistance or opposition to rotation so since the sphere has a smaller moment to inertial it will move faster and reach the ground first then the disk then the hoop in that order