Answer:
When a cyclone continues to be out over the ocean, the winds and huge waves that area unit created by the storm become dangerous for ships and alternative water vessels. ... once the cyclone approaches land it will cause an enormous quantity of injury. Flooding caused by storm surges is one among the foremost dangerous components of a cyclone.
Explanation:
Work is the product of force and distance.
W = F×d
W = (22 N) × (16 m)
W = 352 J
Answer:
i - component of V is zero for any value of t i-e no motion in this direction
Explanation:
Since
r= i+3
j+t k
==> V =
=
=
and acceleration is given by taking derivative of velocity w.r.t t
==> a=
=
=
so, V=0i+6tj+k
and
a = 0i+6j+k
i - component of V is zero for any value of t i-e no motion in this direction
Since this is a projectile motion problem, break down each of the five kinematic quantities into x and y components. To find the range, we need to identify the x component of the displacement of the ball.
Let's break them down into components.
X Y
v₁ 32 cos50 m/s 32 sin50 m/s
v₂ 32 cos50 m/s ?
Δd ? 0
Δt ? ?
a 0 -9.8 m/s²
Let's use the following equation of uniform motion for the Y components to solve for time, which we can then use for the X components to find the range.
Δdy = v₁yΔt + 0.5ay(Δt)²
0 = v₁yΔt + 0.5ay(Δt)²
0 = Δt(v₁ + 0.5ayΔt), Δt ≠ 0
0 = v₁ + 0.5ayΔt
0 = 32sin50m/s + 0.5(-9.8m/s²)Δt
0 = 2<u>4</u>.513 m/s - 4.9m/s²Δt
-2<u>4</u>.513m/s = -4.9m/s²Δt
-2<u>4</u>.513m/s ÷ 4.9m/s² = Δt
<u>5</u>.00s = Δt
Now lets put our known values into the same kinematic equation, but this time for the x components to solve for range.
Δdₓ = v₁ₓΔt + 0.5(a)(Δt)²
Δdₓ = 32cos50m/s(<u>5</u>.00s) + 0.5(0)(<u>5</u>.00)²
Δdₓ = 32cos50m/s(<u>5</u>.00s)
Δdₓ = 10<u>2</u>.846
Therefore, the answer is A, 102.9m. According to significant digit rules, neither would be correct, but 103m is the closest to 102.9m so I guess that is what it is.