Answer:
see below
Explanation:
First: Leave a couple inches of wire loose at one end and wrap most of the rest of the wire around iron u-shaped bar and make sure not to overlap the wires.
Second:Cut the wire (if needed) so that there is about a couple inches loose at the other end too.
Third: Now remove about an inch of the plastic coating from both ends of the wire and connect the one wire to one end of a battery and the other wire to the other end of the battery.
first you do your pyramid f is on top and ma is
on bottom were m=mass and a=acceleration
were in this case you do f÷m=force÷mass so again in this case 125÷0.65=192.3 to be more accurate 192.3076923077
Answer:
The speed Clyde will be falling at is 33.72.
Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
The resultant vector is 11√2 km due north east.
<h3><u>Explanation:</u></h3>
The vector is a type of quantity which has both magnitude and direction. This quantities when expressed needs to specify both magnitude and direction.
We need to calculate the magnitude and direction separately.
Here firstly for the magnitude,
The magnitudes are both 11 km and they are at right angles to each other.
So, the resultant magnitude = √(11² +11²) km
=11√2 km
Now for the direction, one vector is due north and the other is due east.
So the resultant vector is due north east.
So the final vector is 11√2 km due North-East.