Explanation:
Let us assume that the given data is as follows.
mass of barium acetate = 2.19 g
volume = 150 ml = 0.150 L (as 1 L = 1000 ml)
concentration of the aqueous solution = 0.10 M
Therefore, the reaction equation will be as follows.

Hence, moles of
=
.......... (1)
As, No. of moles =
Hence, moles of
will be calculated as follows.
No. of moles =
=
(molar mass of
is 255.415 g/mol)
= 
Moles of
= 
= 0.01715 mol
Hence, final molarity will be as follows.
Molarity = 
= 
= 0.114 M
Thus, we can conclude that final molarity of barium cation in the solution is 0.114 M.
Answer:
Molar mass of vitamin K = 450.56\frac{g}{mol}[/tex]
Explanation:
The freezing point of camphor = 178.4 ⁰C
the Kf of camphor = 37.7°C/m
where : m = molality
the relation between freezing point depression and molality is
Depression in freezing point = Kf X molality
Where
Kf = cryoscopic constant of camphor
molality = moles of solute dissolved per kg of solvent.
putting values
2.69°C = 37.7°C/m X molality
molality = 0.0714 mol /kg

moles of vitamin K = 0.0714X0.025 = 0.00178 mol
we know that moles are related to mass and molar mass of a substance as:

For vitamin K the mass is given = 0.802 grams
therefore molar mass = 
Balance the equation: 2Na + S --> Na2S
Using the given amount of the reactants in the reaction, calculate the amount of the product:
45.3g Na x (1 mol/22.99 g)= 1.97 mol of Na
105f S x (1 mol/ 32.06g) = 3.28 mol of S
The limiting reactant would be Na:
<span>1.97 mol Na x (1 mol Na2S/ 2 mol Na) x (78.04g/mol) = 76.87g of Na2S produced</span>
Answer:
The answer to your question is P = 1.357 atm
Explanation:
Data
Volume = 22.4 L
1 mol
temperature = 100°C
a = 0.211 L² atm
b = 0.0171 L/mol
R = 0.082 atmL/mol°K
Convert temperature to °K
Temperature = 100 + 273
= 373°K
Formula

Substitution

Simplify
(P + 0.0094)(22.3829) = 30.586
Solve for P
P + 0.0094 = 
P + 0.0094 = 1.366
P = 1.336 - 0.0094
P = 1.357 atm
Effect of Two-Step Homogenization on the Evolution of Al3Zr Dispersoids in Al-0.3Mg-0.4Si-0.2Zr Alloy Al3Zr nano-particles can be introduced in Al-Mg-Si 6xxx alloys to improve their elevated temperature behavior and recrystallization resistance. The effect of two-step homogenization treatments on
the precipitation of Al3Zr dispersoids in Al-0.3Mg-0.4Si-0.2Zr alloy was investigated and compared to
<h3>What is
Homogenization?</h3>
Any of a number of methods, including homogenization and homogenisation, are used to uniformly combine two liquids that are insoluble in one another. To do this, one of the liquids is changed into a state in which very minute particles are evenly dispersed across the other liquid. The process of homogenizing milk, in which the milk fat globules are equally distributed throughout the remaining milk and reduced in size, is a classic example. In order to create an emulsion, two immiscible liquids (i.e., liquids that are not soluble in all amounts one in another) must be homogenized (from "homogeneous"; Greek, homos, same + genos, kind)[2] (Mixture of two or more liquids that are generally immiscible).
To learn more about Homogenization from the given link:
brainly.com/question/18271118
#SPJ4