Answer:
28.6 kg
Explanation:
The final weight can be calculated from the mixing data and formulae which is given as follows:
cement content = 
Computing the parameters and checking the tables gives 28.6 kg.
Answer:
b. 10A
Explanation:
Using the formula, E= k × r×I
200= 0.5 ×2000×0.02×I
200=20×I
Dividing with 20
I = 200/20= 10A
The watts that are consumed is 80 watts.
<h3>What power factor?</h3>
The term power factor has to do with the measure of the efficiency of the use of energy. Recall that power is defined as the rate of doing work. The magnitude of the power factor shows the extent to which the power is used.
Now, to obtain the watts are consumed in a circuit having a power factor of 0. 2 if the input is 100 vac at 4 amperes we have; V × I × PF = 100V × 4A × 0.2 = 80 watts.
Learn more about power factor:brainly.com/question/10634193
#SPJ4
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
I think because if you’ve already turned it in they might as well grade asap instead of waiting