Answer:
Width w = 4m
Glow depth = y1 = 20m
Outlet discharge = 40m
V1= velocity of flow = 40/20*4 = 1/2 = 0.5m/s
Froud number = v1/√gy1
= 0.5/√9.81x20 = 0.0356
1. Y2/20 = 1/2[-1+√1+8*(0.0356)²]
Y2 = 0.05
2. Energy loss in the jump = (20-0.05)²/4x20x0.05
= 1985m
Answer: a. Leave the lane closest to the emergency as soon as it is safe to do so, or slow down to a speed of 20 MPH below the posted speed limit.
Explanation:
Giving a way to the law enforcement vehicle and a medical emergency vehicle is necessary. If one approaches an emergency vehicle parked along the roadway one should change the lane as the vehicle may not move and the driver may also waste his or her time also one should also slow down his or her speed while approaching the vehicle as most of the emergency vehicle are in rush to reach the hospital so the driver should maintain some distance with the medical emergency vehicle.
Answer:
119.35 mm
Explanation:
Given:
Inside diameter, d = 100 mm
Tensile load, P = 400 kN
Stress = 120 MPa
let the outside diameter be 'D'
Now,
Stress is given as:
stress = Load × Area
also,
Area of hollow pipe =
or
Area of hollow pipe =
thus,
400 × 10³ N = 120 ×
or
D² = tex]\frac{400\times10^3+30\pi\times10^4}{30\pi}[/tex]
or
D = 119.35 mm
Answer:
A) attached below
B) 743 KJ
C) 1.8983 KJ/K
Explanation:
A) Diagram of system schematic and set up states
attached below
<u>B) Calculate the amount of work received from the paddle wheel </u>
assuming ideal gas situation
v1 = v2 ( for a constant volume process )
work generated by paddle wheel = system internal energy
dw = mCv dT . where ; Cv = 0.743 KJ/kgk
= 5 * 0.743 * ( 500 - 300 )
= 3.715 * 200 = 743 KJ
<u>C) calculate the amount of entropy generated ( KJ/K )</u>
S2 - S1 = 1.8983 KJ/K
attached below is the detailed solution