Answer:
a) Please see attached copy below
b) 0.39KJ
c) 20.9‰
Explanation:
The three process of an air-standard cycle are described.
Assumptions
1. The air-standard assumptions are applicable.
2. Kinetic and potential energy negligible.
3. Air in an ideal gas with a constant specific heats.
Properties:
The properties of air are gotten from the steam table.
b) T₁=290K ⇒ u₁=206.91 kj/kg, h₁=290.16 kj/kg.
P₂V₂/T₂=P₁V₁/T₁⇒ T₂=P₂T₁/P₁ = 380/95(290K)= 1160K
T₃=T₂(P₃/P₂)⁽k₋1⁾/k =(1160K)(95/380)⁽⁰°⁴/₁.₄⁾ =780.6K
Qin=m(u₂₋u₁)=mCv(T₂-T₁)
=0.003kg×(0.718kj/kg.k)(1160-290)K= 1.87KJ
Qout=m(h₃₋h₁)=mCp(T₃₋T₁)
=0.003KG×(1.005kj/kg.k(780.6-290)K= 1.48KJ
Wnet, out= Qin-Qout = (1.87-1.48)KJ =0.39KJ
c)ηth= Wnet/W₍in₎ =0.39KJ/1.87KJ = 20.9‰
Answer:
Explanation:
Products of oil in our everyday life:
(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c
(2) Asphalt : Used extensively to make Motor Road, highways
(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c
(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.
(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.
The brakes are being bled on a passenger vehicle with a disc/drum brake system is described in the following
Explanation:
1.Risk: Continued operation at or below Rotor Minimum Thickness can lead to Brake system failure. As the rotor reaches its minimum thickness, the braking distance increases, sometimes up to 4 meters. A brake system is designed to take kinetic energy and transfer it into heat energy.
2.Since the piston needs to be pushed back into the caliper in order to fit over the new pads, I do open the bleeder screw when pushing the piston back in. This does help prevent debris from traveling back through the system and contaminating the ABS sensors
3.There are three methods of bleeding brakes: Vacuum pumping. Pressure pumping. Pump and hold.
4,Brake drag is caused by the brake pads or shoes not releasing completely when the brake pedal is released. ... A worn or corroded master cylinder bore causes excess pedal effort resulting in dragging brakes. Brake Lines and Hoses: There may be pressure trapped in the brake line or hose after the pedal has been released.
Answer:
modulus of elasticity for the nonporous material is 340.74 GPa
Explanation:
given data
porosity = 303 GPa
modulus of elasticity = 6.0
solution
we get here modulus of elasticity for the nonporous material Eo that is
E = Eo (1 - 1.9P + 0.9P²) ...............1
put here value and we get Eo
303 = Eo ( 1 - 1.9(0.06) + 0.9(0.06)² )
solve it we get
Eo = 340.74 GPa