The radius of curvature of the proton's path while in the field is
×
.
b) Let R = radius curvature of protons path. Then,
relation b/w B, R, and v is: -


× 
Hence, the radius of curvature of the proton's path while in the field is
×
.
<h3>
What do you mean by Magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field. The magnetic field of a permanent magnet pulls on ferromagnetic substances like iron and attracts or repels other magnets. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilized in electromagnets, and electric fields that change in time produce magnetic fields that surround magnetized things.
To know more about Magnetic Field visit:
brainly.com/question/14848188
#SPJ4
Good afternoon!
the answer to that particular question is this
rule
a particular pitch directly corresponds to frequency in that if you have a pitch you will have a high frequency
if you a low frequency you will have a low pitch
both are intertwined in marriage!
Answer: velocity = -0.65 speed =0.65
Explanation:
Velocity =speed+direction speed =distance/time
Answer:
See the explanation below
Explanation:
The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

where:
Ro = density of the fluid [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.
Therefore in order of decreasing will be
The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.
The pressure decreases as we go from the container B - D - A - C