Answer:
A. reintroducing an animal to the ecosystem
Explanation:
As generally, all know that for restoring an ecosystem naturally, it requires reintroduction of an animal to the ecosystem. As though it helps in reimposing the ecosystem back, and also helps to improve our ecosystem in natural surroundings, natural terrain, and population density. Basically reintroducing an animal is also required for the balancing of the ecosystem. As everything requires a properly balanced nature.
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
Answer:
v = 478.26 km/h
Explanation:
The question is "find in km.h the speed of a tiger that runs 550 km in 69min"
Distance, d = 550 km
Time, t = 69 min = 1.15 h
We need to find the speed of the tiger. The speed of an object is equal to the total distance covered divided by time taken. So,

So, the speed of the tiger is 478.26 km/h.
Complete Question
The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .
What eyepiece focal length will give the microscope an overall angular magnification of 300?
Answer:
The eyepiece focal length is
Explanation:
From the question we are told that
The focal length is 
This negative sign shows the the microscope is diverging light
The angular magnification is 
The distance between the objective and the eyepieces lenses is 
Generally the magnification is mathematically represented as
![m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]](https://tex.z-dn.net/?f=m%20%20%3D%20%20%5B%5Cfrac%7BZ%20-%20f_e%20%7D%7Bf_e%7D%5D%20%5B%5Cfrac%7B0.25%7D%7Bf_0%7D%20%5D)
Where
is the eyepiece focal length of the microscope
Now making
the subject of the formula
![f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7BZ%7D%7B1%20-%20%5B%5Cfrac%7BM%20%20%2A%20%20f_o%20%7D%7B0.25%7D%5D%20%7D)
substituting values
![f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7B%200.19%20%7D%7B1%20-%20%5B%5Cfrac%7B300%20%20%2A%20%20-0.0055%20%7D%7B0.25%7D%5D%20%7D)
Answer: i personally think it would be 789
Explanation:
Hopefully I am right