Gold has a heavy enough nucleus that its electrons must travel at speeds nearing the speed of light to prevent them from falling into the nucleus. This relativistic effect applies to those orbitals that have appreciable density at the nucleus, such as s and p orbitals. These relativistic electrons gain mass and as a consequence, their orbits contract. As these s and (to some degree) p orbits are contracted, the other electrons in d and f orbitals are better screened from the nucleus and their orbitals actually expand.
Since the 6s orbital with one electron is contracted, this electron is more tightly bound to the nucleus and less available for bonding with other atoms. The 4f and 5d orbitals expand, but can't be involved in bond formation since they are completely filled. This is why gold is relatively unreactive.
Hope it helps
Answer:
1. Caffeine, C₈H₁₀N₄O₂
Amount = 1.00/194 = 0.00515 moles
2. Ethanol, C₂H₅OH
Amount = 0.0217 moles
3. Dry Ice, CO₂
amount = 0.0227 moles
<em>Note: The question is incomplete. The compound are as follows:</em>
<em> 1. Caffeine, C₈H₁₀N₄O₂;</em>
<em>2. Ethanol, C₂H₅OH;</em>
<em>3. Dry Ice, CO₂</em>
Explanation:
Amount (moles) = mass in grams /molar mass in grams per mole
1. Caffeine, C₈H₁₀N₄O₂
molar mass of caffeine = 194 g/mol
Amount = 1.00 g/194 g/mol = 0.00515 moles
2. Ethanol, C₂H₅OH
molar mass of ethanol = 46 g/mol
Amount = 1.00 g/46 g/mol = 0.0217 moles
3. Dry Ice, CO₂
molar mass of dry ice = 44 g/mol
amount = 1.00 g/44 g/mol = 0.0227 moles
The reaction will produce 12.1 g Ag₂S.
<em>Balanced equation</em> = 2Ag + S ⟶ Ag₂S
<em>Mass of Ag₂S</em> = 10.5 g Ag × (1 mol Ag/107.87 g Ag) × (1 mol Ag₂S/2 mol Ag)
× (247.80 g Ag₂S/1 mol Ag₂S) = 12.1 g Ag₂S
It's just graphing. puck acceleration is the x axis and swing length is the y axis